关于振动时效设备海讯实业有哪些特点呢?
[发布日期:2022/12/2 6:15:59]振动消除应力简称VSR(VibratoryStressRelief),它是利用受控振动能量对金属工件进行处理,达到消除工件残余应力的目的。
国内外大量的应用实例证实,振动时效对稳定零件的尺寸精度具有良好的作用。
从宏观角度分析,振动时效使零件产生塑性变形,降低和均化残余应力并进步材料的抗变形能力,无疑是导致零件尺寸精度稳定的基本原因。从分析残余应力松弛和零件变形中可知,残余应力的存在及其不稳定性造成了应力松弛和再分布,使零件发生塑性变形。故通常采用热时效方法以消除和降低残余应力,特别是危险的峰值应力。振动时效同样可以降低残余应力。零件在振动处理后残余应力通常可降低20%~30%,有时可达50%~60%,同时也可使峰值应力降低,使应力分布均化。
除残余应力值外,决定零件尺寸稳定性的另一重要因素是松弛刚性,即零件抗变形能力。有时固然零件具有较大的残余应力,但因其抗变形能力强,而不致造成大的变形。在这一方面,振动时效同样表现出明显的作用。由振动时效的加载试验结果可知,振动时效件的抗变形能力不仅高于未经时效的零件,也高于经热时效处理的零件。通过振动而使材料得到强化,使零件的尺寸精度达到稳定。
从微观方面分析,振动时效工艺可视为一种以循环载荷的形式施加于零件上的一种附加应力。众所周知,工程上采用的材料都不是理想的弹性体,其内部存在着不同类型的微观缺陷,无论是钢、铸铁或其他金属,其中的微观缺陷四周都存在着不同程度的应力集中。当受到振动时,施加于零件上的交变应力与零件中的残余应力叠加。当应力叠加的结果达到一定的数值后,在应力集中.严重的部位就会超过材料的屈服极限而发生塑性变形,降低了该处残余应力峰值,并强化了金属基体。而后,振动又在另一些应力集中较严重的部位上产生同样作用,直至振动附加应力与残余应力叠加的代数和不能引起任何部位的塑性变形为止,此时,振动便不再产生消除均化残余应力及强化金属的作用。图是振动时效工艺处理的现场,其中控制器是控制激振器产生所需振动能量、频率;激振器是刚性连接在工件上,产生激振力,带动工件产生振动的设备,由电机与偏心轮组成;通过传感器,获取工件受振能量信息。
二、 振动焊接工艺规程
振动焊接和振动时效是为提高焊缝质量而在两个阶段分别采取的技术工艺过程。
振动焊接是在焊接过程中进行的振动处理过程,而振动时效是在构件焊接成型后而进行的时效处理过程,前者的作用在於使晶粒细化提高材料的机械性能。降低焊接应力和变形、减少气孔和杂质并使焊接纹理细密提高宏观焊接质量。而后者则是专门用於降低和均化焊接应力,消除残余应力对变形、开裂和疲劳寿命的影响。
相比较而言,尽管在消除应力方面、振动焊接起到一定的作用,但其毕竟振动很小,产生的动应力不大,因此消除主应力的效果是赶不上振动时效的效果更好。从这一点出发,对於大型构件建议工艺规程应是振动焊接与振动时效同时采用:即..阶段在焊接过程中采用振动焊接、第二阶段采用振动时效处理这将是.佳工艺规程。
三、振动焊接工艺参数
1、激振频率 20Hz~100Hz;
2、激振振幅 10μm~50μm;
3、振动方式 共振与非共振均可;
4、构件直接振动或振动台带动构件振动均可;
5、振幅的选择应尽量接近材料晶粒的直径,即不同材料选用不同的振幅;
6、在20Hz~100Hz范围内如有共振峰,可选择共振峰高1/3~2/3所对应频率来处理,但要..振幅在规定范围内,共振易於调整振幅值。
四、振动时效对金属构件的影响有哪些?
振动时效由于时效效果好、对工件的尺寸稳定性强、经济实用、投资少、节能显著等优点,逐渐取代传统的自然时效和热时效越来越广泛的应用于实践中。在工件的铸造、焊接、锻造、机械加工等制造过程中,工件内部会产生残余应力。残余应力的存在必然会导致工件变形、开裂,严重影响了工件的尺寸稳定性,降低工件的疲劳寿命。
振动时效对金属构件的影响:
1、对金属材料力学性能的影响。经振动时效后,材料的屈服和抗拉强度提高;断裂韧性提高,防止工件脆断。
2、振动时效可以降低和均化构建中的残余应力,工件受周期性附加动应力的作用,在应力集中处发生局部的塑性变形,继而又在整体上发生较大的塑性变形。
3、不仅使工件在长期使用过程中尺寸精度变化较小,而且能在较短的时间内使零件尺寸达到稳定。
4、振动时效不仅能够减小和均化残余应力,还可提高材料的抗变形能力。
五、振动时效对工件残余应力的影响
零件内部的残余应力是使其尺寸精度不稳定的主要因素。影响尺寸稳定性的不仅是残余应力数值的大小,应力分布的均匀性也有着重大的影响。振动时效常被认为是消除工件残余应力的一种有效方法,但一系列试验研究证明,振动时效对均化残余应力也有更明显的作用。
通过实践和试验证明,振动时效对减少和均化残余应力皆有着良好作用。这是由于振动过程中,工件受周期性附加动应力的作用,在应力集中处首先发生局部的塑性变形,继而又在整体上发生较大的塑性变形。峰值应力处产生的塑性变形较大,而其它部位则相对较小。正是由于这种塑性变形导致了工件中残余应力的降低和均化。
振动时效的实质是通过振动的形式给工件施加一个动应力,当动应力与工件本身的残余应力叠加后,达到或超过材料的微观屈服极限时,工件就会发生微观或宏观的局部、整体的弹性塑性变形,同时降低并均化工件内部的残余应力,.终达到防止工件变形与开裂,稳定工件尺寸与几何精度的目的。
六、振动时效消除残余应力的优势
振动时效工艺其原理是用振动消除残余应力,可达到热时效工艺的同样效果,并在许多性能指标上超过热时效。振动时效工艺耗能少(是热时效的2%左右)、设备投资少、效率高,其在节能、减少环境污染和提高产品性能方面有卓越的表现,使得这一高新技术在各行各业中有广泛的应用前景。
金属构件在焊接、铸造、锻造和机械加工等工艺过程中,其内部将产生残余应力,极大地影响了构件的尺寸稳定性、刚度、强度和机械加工性能等。“时效”,是降低残余应力使构件尺寸精度稳定的方法。目前用于消除残余应力的通用方法有:热时效、自然时效和振动时效。热时效存在着能耗大、成本高、材料机械性能下降、大工件无法处理等弊端;自然时效时间长,效率低,仅能使应力消除2%~10%等弱点。国外60年开始研究采用振动时效来消除金属工件内残余应力。随着研究的深入,振动时效工艺技术便产生并不断改进。振动时效工艺,国外称为“VSR”(VibratoryStressRelief)方法,是利用共振原理降低和均化金属结构内部残余应力,获得结构尺寸精度稳定的一种新技术,其特点可完全取代传统的热时效和自然时效工艺,具体特点如下:
1、时效效果好
大量的研究和实际应用证明,振动时效对工件的时效效果好于烧煤、重油或煤气的热时效炉,而基本与电炉的时效效果相近。因为振动时效不仅克服了热时效炉炉温不均而造成消除应力不均匀之难题,而且避免了工件因加热而降低其抗变形能力的影响,所以一般经振动时效处理的工件较一般热时效处理的工件的尺寸稳定性可提高30%以上。
2、提高构件抗变形能力,稳定构件加工尺寸
振动时效使构件基体内晶体结构强化,从而提高了构件抗变形能力和尺寸稳定性。
对于那些无需改变组织状态、非加工硬化材料,振动时效完全可以取代热时效。此外,振动时效可处理热时效不能处理的大型工件。一方面,振动时效可以看成是在周期性动应力作用下循环应变的过程。由于金属晶体内存在有大量的位错,在循环应变下,位错克服阻力而运动,产生滑移使晶体发生微观塑性变形,残余应力峰值下降,从而改变了工件原有的内应力场,工件内部应力降低,并重新分布,在较低的应力水平下达到平衡。另一方面,振动时效以机械能的形式施加给工件一定的振动能量,从而提高了构件内部晶体的动能,加快了畸变晶格恢复平衡位置的速度,晶格排列趋于平衡,工件内部阻尼减小,内应力峰值降低,分布均化。
3、 提高焊件疲劳寿命
振动时效通过降低焊接残余应力,有效地延缓裂纹萌生,降低其扩展速度,从而提高焊件的疲劳寿命。疲劳裂纹的萌生总是先在应力.高,强度.弱的基体上形成。试件经振动时效处理后,由于高残应力的降低,应力分布的均化,减少了应力集中的影响;另外,由于位错积塞、缠结和网状化程度的增大及位错密度的增加,使滑移带滑移更加困难,从而延缓了疲劳裂纹的成核时间,使裂纹萌生寿命增大。
4、提高焊件抗应力腐蚀性能
残余拉应力是产生应力腐蚀的重要原因。振动时效减少了构件的应力集中效应,有效地消除和均化了残余应力,从而提高了焊件抗应力腐蚀性能。
5、提高金属材料冲击功Ak值
振动时效使金属试件由振前处于较高能量级的平衡,转变成振后处于较低能量级的平衡,即处于更稳定的状态,从而提高了其冲击功Ak值。
振动时效使冲击试验的两组试样在冲击前处在不同能量级状态下,处在较低能量级试件(振后试件)其抵抗断裂的能力将比处在较高能量级试件(振前试件)强,即振动时效后试件在冲击过程中所耗冲击吸收功Ak将比振动时效前试件要大。振动时效使裂纹扩展阻力增大,裂纹扩展过程中绕曲的次数增多,材料的冲击韧性提高,冲击功Ak值增大。
6、投资少,经济实用
振动时效设备的价格一般在2~8万元左右,就能满足几百吨以下工件的时效处理,而对大型工件建造热时效炉窑不仅需投资几十万元,而且占地面积大,应用起来不灵活,如果工件少还不值得开炉、工件太大时又装不进炉等。
与热时效相比它无需庞大的时效炉,可节省占地面积与昂贵的设备投资。现代工业中的大型铸件与焊接件如采用热时效消除应力则需建造大型时效炉不仅造价昂贵利用率低,而且炉内温度很难均匀消除应力效果很差,采用振动时效可以完全避免这些问题。因此目前对长达几米至几十米的桥梁船舶,化工器械的大型焊接件和重达几吨至几十吨的超重型铸件较多地采用了振动时效。
7、适应性强
振动时效技术的使用不受场地、工件大小、形状、重量等条件的限制,由于振动时效设备只有几十公斤,所以对大型工件可就地进行时效处理。同时根据工艺要求可安排在工件不同的加工工序间进行时效处理
8、无环境污染问题。
随着人们对环境要求的提高,热时效炉窑的烟气、粉尘、炉渣问题已受到限制,振动时效则能完全避免,这也是振动时效技术被..环保局近几年一直推广的原因。
9、节能显著
振动时效处理一个周期下来只用几度电,与热时效比较起来其节能基本在95%以上。
在工件的共振频率下进行时效处理耗能极小,实践证明功率0.18~0.74kW的机械式激振器可振动150t以下的工件,故粗略计算其能源消耗仅为热时效3%~5%,成本仅为热时效的8%~10%。
10、效率高
自然时效需经6个月至一年时间,热时效也需要十几至几十个小时一个周期,而振动时效只需十几分钟至一个小时即可完成。
11、使用方便
振动设备体积小、重量轻,因此便于携带。由于振动处理不受场地限制,振动装置又可携至现场,所以这种工艺与热时效相比使用简便适应性较强。
12、生产周期短
自然时效需经几个月的长期放置,热时效亦需经数十小时的周期方能完成而振动时效一般只寵振动数十分钟即可完成,面且振动时效不受场地限制,可减少工件在时效前后的往返运输,如将振动设备安置在机械加工生产线上,不仅使生产安排更紧凑而且可以消除加工过程中产生的应力。
13、适合不宜高温时效的工件消除应力处理
如不锈钢件、有色金属件、焊修后的机械零件等等
14、其他
振动时效操作简便易于实现机械化、自动化;可避免金属零件在热时效过程中产生的翘曲变形、氧化、脱碳及硬度降低等缺陷;是目前能进行二次时效的方法。它又是绿色技术,在时效过程中无污染,目前,我国热时效炉有相当大的比重,量大面广,从能耗角度看约占总能耗的1%左右。全国年耗标煤13.85亿吨,按1%计为1380万吨,若热时效工艺50%用振动时效代替,年节约标准煤达690万吨,且减少废气排放,解决大型焊接结构件处理问题等,社会、经济效益非常明显。
振动时效工艺不需对工件加热、保温,仅需对工件激振所耗很少电能,无废气排放,无空气污染,不需为时效工艺处理工序转运工件,生产周期短。虽然目前在二重的产品中,振动时效比重及推广应用价值己得到重视和肯定。推广应用振动时效工艺,不仅可降低产品成本,还可提高企业的生产能力、产品质量,节约大量不可再生的能源(天然气),改善和保护我们的生存环境。